首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5863篇
  免费   163篇
  国内免费   235篇
  2023年   39篇
  2022年   32篇
  2021年   61篇
  2020年   82篇
  2019年   83篇
  2018年   94篇
  2017年   74篇
  2016年   89篇
  2015年   93篇
  2014年   143篇
  2013年   223篇
  2012年   113篇
  2011年   218篇
  2010年   131篇
  2009年   249篇
  2008年   237篇
  2007年   274篇
  2006年   207篇
  2005年   223篇
  2004年   197篇
  2003年   194篇
  2002年   209篇
  2001年   135篇
  2000年   131篇
  1999年   153篇
  1998年   154篇
  1997年   143篇
  1996年   156篇
  1995年   144篇
  1994年   130篇
  1993年   170篇
  1992年   136篇
  1991年   156篇
  1990年   139篇
  1989年   139篇
  1988年   118篇
  1987年   111篇
  1986年   118篇
  1985年   122篇
  1984年   125篇
  1983年   71篇
  1982年   117篇
  1981年   98篇
  1980年   73篇
  1979年   52篇
  1978年   24篇
  1977年   30篇
  1976年   26篇
  1975年   9篇
  1972年   5篇
排序方式: 共有6261条查询结果,搜索用时 31 毫秒
61.
The effects of extracellular K+ concentration ([K+]o) on the pH of cell sap, “bulk cytoplasm” and vacuole have been investigated in Elodea densa leaves under conditions of either low or high activity of the plasmalemma electrogenic H+ pump. Cell sap pH was evaluated directly in the cell sap expressed after freezing and thawing. Cytoplasmic and vacuolar pH were calculated by the weak base and weak acid distribution method, DMO and benzylamine appearing to be a suitable acid and base, respectively, for this purpose in this material. When added to the basal medium (no rapidly permeating ions present), 5 mM K+ induced an increase in intracellular pH, larger for the cell sap and the vacuole (about 0.2 units), and smaller but still significant for the cytoplasm (0.07 units). This alkalinizing effect of K+ was thus associated with a significant decrease in the pH difference across the tonoplast. The alkalinizing effect of K+ was markedly and synergistically enhanced by the presence of fusicoccin, a condition inducing a marked activation of H+ extrusion and of K+ uptake. The correlation between these effects of [K+]o on intracellular pH and those on H+ extrusion indicates that changes in extracellular K+ concentration, and thus in K+ influx, can influence cytoplasmic and vacuolar pH by modulating the rate of H+ extrusion by the plasmalemma H+ pump.  相似文献   
62.
Effects of endotoxin administration on the ATP-dependent Ca2+ transport in canine cardiac sarcolemma were investigated. The results show that the sidedness of the sarcolemmal vesicles was not affected but the ATP-dependent Ca2+ transport in cardiac sarcolemma was decreased by 22 to 46% (p < 0.05) at 4 h following endotoxin administration. The kinetic analysis indicates that the Vmax for ATP and for Ca2+ were decreased by 50% (p < 0.01) and 32% (p < 0.01), respectively, while the Km values for ATP and Ca2+ were not significantly affected after endotoxin administration. Magnesium (1–5 mM) stimulated while vanadate (0.25–3.0 M) inhibited the ATP-dependent Ca2+ transport, but the Mg2+-stimulated and the vanadate-inhibitable activities remained significantly lower in the endotoxin-treated animals. These data demonstrate that endotoxin administration impairs the ATP-dependent Ca2+ transport in canine cardiac sarcolemma and that the impairment is associated with a mechanism not affecting the affinity towards ATP and Ca2+. Additional experiments show that the Ca2+ sensitivity of the Ca2+-ATPase activity was indifferent between the control and endotoxic groups suggesting that endotoxic injury impairs Ca2+ pumping without affecting Ca2+-ATPase activity. Since sarcolemmal ATP-dependent Ca2+ transport plays an important role in the regulation of cytosolic Ca2+ homeostasis, an impairment in the sarcolemmal ATP-dependent Ca2+ transport induced by endotoxin administration may have a pathophysiological significance in contributing to the development of myocardial dysfunction in endotoxin shock.  相似文献   
63.
The response of Acinetobacter strain 210A to low phosphate concentrations was investigated in P- or C-limited chemostat cultures. The organism accumulated poly--hydroxybutyric acid under P-deprivation, at phosphate concentrations ranging from 0.1 to 0.7 mM. The amount of biomass was proportional to the phosphate concentration in the medium and no polyphosphate was formed. When shifting a culture from P- to C-limitation phosphate was accumulated as polyphosphate. No poly--hydroxybutyrate could be detected in these cells. The amount of polyphosphate in the cell showed a hysteresis. When cultures were shifted from low to high phosphate concentrations, polyphosphate reached a maximum of about 60 mg P per gram of dry weight at about 3 times excess phosphate (ca. 2.5 mM Pi). It decreased to 45 mg P per gram dry weight at approximately 5 times the phosphate needed for growth (ca. 3.5 mM Pi). In the reverse case (high to low) polyphosphate did never exceed 45 mg P per gram dry weight. The specific activities of alkaline phosphatase and the phosphate uptake system were induced at residual Pi concentrations below the detection limit (<10 M). The specific uptake rate followed also a hysteresis. The specific activities of polyphosphatase and polyphosphate: AMP phosphotransferase increased when polyphosphate formation was possible.Abbreviations HPP High polymeric polyphosphates - PHB Poly--hydroxybutyric acid - PPn Polyphosphate - PQQ Pyrrolo-quinoline quinone - U 1 mol product formed · min-1  相似文献   
64.
The topographic distribution of dopamine (DA) uptake, choline uptake, choline acetyltransferase (ChAT) activity and GABA uptake within the striata of weaver mutant mice and control mice was determined. Uptake of [3H]dopamine, [3H]choline and [14C]GABA, as well as ChAT activity were determined in samples prepared from the dorsolateral, dorsomedial, ventrolateral and ventromedial portions of the striatum. In 45–60 day old control mice, dopamine uptake was homogeneously distributed throughout the striatum. On the other hand, striata from weaver mice exhibited an uneven distribution with the ventral aspects having greater uptake activity than the dorsal regions. Thus, although the ventral portion of the striatum is less severely affected than the dorsal portion, all areas of the striatum exhibited significantly reduced uptake rates. In 9 and 12 month old mice, choline uptake was higher in lateral than medial zones of the striatum of both genotypes and no differences were observed between genotypes. GABA uptake was higher in the ventral striatum than in the dorsal striatum but again no differences were found between weaver and control mice. The results of this study indicate that the entire weaver striatum is severely deficient in its ability to recapture dopamine and thus is functionally compromised. The results also indicate that the striatal cholinergic and GABAergic interneurons are not directly or indirectly affected by the weaver gene.Special ïssue dedicated to Dr. Morris H. Aprison  相似文献   
65.
In our previous study vesamicol, an inhibitor of the acetylcholine transporter of the cholinergic vesicles, inhibited veratridine-evoked external Ca2+-dependent acetylcholine release from striatal slices but did not influence acetylcholine release observed in Ca2+-free medium (4). Here we examined if the effect of veratridine on membrane potential, Ca2+ uptake, and intracellular Ca2+ concentration of synaptosomes was altered by vesamicol in parallel with the inhibition of acetylcholine release. The depolarizing effect of 10 M veratridine (from 67±2.3 mV resting membrane potential to 50.7±2.5 mV) was not significantly influenced by vesamicol (1–20 M). Vesamicol (1–20 M) had no effect on either the overall curve of the veratridine-evoked45Ca2+ uptake or the amount of Ca2+ taken up by synaptosomes. Veratridine caused a rise in intrasynaptosomal Ca2+ concentration as measured by Fura2 fluorescence, and the same increase both in characteristics and in magnitude was observed in the presence of vesamicol (20 M). The K+-evoked (40 mM) increase of Ca2+ uptake and of intracellular calcium concentration were also unaltered by vesamicol. In high concentration (50 M) vesamicol inhibited both the fall in membrane potential and the elevated Ca2+ uptake by veratridine, indicating a possible nonspecific effect on potential-dependent Na+ channels at this concentration. Vesamicol, in lower concentration (20 M) when neither of the above parameters was changed, completely prevented veratridine-evoked increase of [14C]acetylcholine release. This was observed only when vesamicol was present in the media throughout the experiment after loading the preparation with [14C]choline. The results suggest that vesamicol does not interfere with veratridine-induced changes in isolated nerve terminals other than with the release of acetylcholine, thus further supporting the involvement of a vesamicol-sensitive vesicular transmitter pool in Ca2+-dependent veratridine-elicited acetylcholine release.  相似文献   
66.
67.
Summary The effects of short- and long-term exposure to a range in concentration of sea salts on the kinetics of NH inf4 sup+ uptake by Spartina alterniflora were examined in a laboratory culture experiment. Long-term exposure to increasing salinity up to 50 g/L resulted in a progressive increase in the apparent Km but did not significantly affect Vmax (mean Vmax=4.23±1.97 mole·g–1·h–1). The apparent Km increased in a nonlinear fashion from a mean of 2.66±1.10 mole/L at a salinity of 5 g/L to a mean of 17.56±4.10 mole/L at a salinity of 50 g/L. These results suggest that the long-term effect of exposure to total salt concentrations within the range 5–50 g/L was a competitive inhibition of NH inf4 sup+ uptake in S. alterniflora. No significant NH inf4 sup+ uptake was observed in S. alterniflora exposed to 65 g/L sea salts. Short-term exposure to rapid changes in salinity significantly affected both Vmax and Km. Reduction of solution salinity from 35 to 5 g/L did not change Vmax but reduced Km by 71%. However, exposing plants grown at 5 g/L salinity to 35 resulted in an decrease in Vmax of approximately 50%. Exposure of plants grown at 35 g/L to a total sea salt concentration of 50 g/L for 48h completely inhibited uptake of NH inf4 sup+ . For both experiments, increasing salinity led to an increase in the apparent Km similar to that found in response to long-term exposure. Our data are consistent with a conceptual model of changes in the productivity of S. alterniflora in the salt marsh as a function of environmental modification of NH inf4 sup+ uptake kinetics.  相似文献   
68.
The morphological development and N uptake patterns of spring barley (Hordeum vulgare L.) genotypes of Northern European (Nordic) and Pacific Northwest US (PNW) origin were compared under two diurnally fluctuating root temperature regimes in solution culture. The two regimes, 15/5°C and 9/5°C day maximum/night minimum temperatures, simulated soil temperature differences between tilled vs. heavy-residue, no-till conditions, respectively, observed during early spring in eastern Washington. Previous field experiments indicated that some of the Nordic genotypes accumulated more N and dry matter than the PNW cultivars during early spring under no-till conditions. The objective of this experiment was to determined whether these differences 1) are dependent on the temperature of the rooting environment, and 2) are correlated with genotypic differences in NH4 + and NO3 uptake. Overall, shoot N and dry matter accumulation was reduced by 40% due to lower root temperatures during illumination. Leaf emergence was slowed by 14 to 22%, and tiller production was also inhibited. All genotypes absorbed more ammonium than nitrate from equimolar solutions, and the proportion of total N absorbed as NH4 + was slightly higher in the 9/5°C than the 15/5°C regime. A Finnish genotype, HJA80201, accumulated significantly more shoot N than the PNW cultivars, Clark and Steptoe, and also more than a Swedish cultivar, Pernilla, in the 9/5°C regime. In the 15/5°C regime Steptoe did not differ in shoot N from the Nordic genotypes, while Clark remained significantly lower. These differences were not correlated to relative propensity for N form. Root lengths of the Nordic genotypes were significantly greater than the PNW genotypes grown under the 9/5°C regime, while the root lengths in the warmer root temperture regime were not significantly different among genotypes. Higher root elongation rates under low soil temperature conditions may be an inherent adaptive mechanism of the Nordic genotypes. Overall, the data indicate that lower maximum daytime temperatures of the soil surface layer likely account for a significant portion of the growth reductions and lower N uptake observed in no-till systems.  相似文献   
69.
Silicon accumulation and water uptake by wheat   总被引:2,自引:0,他引:2  
Silicon (Si) content in cereal plants and soil-Si solubility may be used to estimate transpiration, assuming passive Si uptake. The hypothesis for passive-Si uptake by the transpiration stream was tested in wheat (Triticum aestivum cv. Stephens) grown on the irrigated Portneuf silt loam soil (Durixerollic calciorthid) near Twin Falls, Idaho. Treatments consisted of 5 levels of plant-available soil water ranging from 244 to 776 mm provided primarily by a line-source sprinkler irrigation system. Evapotranspiration was determined by the water-balance method and water uptake was calculated from evapotranspiration, shading, and duration of wet-surface soil. Water extraction occurred from the 0 to 150-cm zone in which equilibrium Si solubility (20°C) was 15 mg Si L–1 in the Ap and Bk (0–58 cm depth) and 23 mg Si L–1 in the Bkq (58–165 cm depth).At plant maturity, total Si uptake ranged from 10 to 32 g m–2, above-ground dry matter from 1200 to 2100 g m–2 and transpiration from 227 to 546 kg m–2. Silicon uptake was correlated with transpiration (Siup=–07+06T, r2=0.85) and dry matter yield with evapotranspiration (Y=119+303ET, r2=0.96). Actual Si uptake was 2.4 to 4.7 times that accounted for by passive uptake, supporting designation of wheat as a Si accumulator. The ratio of Si uptake to water uptake increased with soil moisture. The confirmation of active Si uptake precludes using Si uptake to estimate water use by wheat.  相似文献   
70.
White clover (Trifolium repens L.) plants were grown in a calcareous soil in pots with three compartments, a central one for root growth and two outer ones for growth of vesicular-arbuscular (VA) mycorrhizal (Glomus mosseae [Nicol. & Gerd.] Gerdemann & Trappe) hyphae (hyphal compartments). Phosphorus (P) was applied at three levels (0, 20 and 50 mg kg−1 soil) in the outer compartments in mycorrhizal treatments. Root and shoot dry weight were increased in mycorrhizal plants with hyphal access to outer compartments. Growth of the mycorrhizal hyphae in the outer compartments was not significantly affected by variation in P level in these compartments. However, both concentration and amount of P in roots and shoots sharply increased with increasing P supply in the outer (hyphal) compartments. With increasing P levels the calculated delivery of P by the hyphae from the outer compartments increased from 34% to 90% of total P uptake. Hyphal access to the outer compartments also significantly increased both concentration and quantity of Cu in the plants. The calculated delivery of Cu by the hyphae from the outer compartments ranged from 53% to 62% of total Cu uptake, irrespective of the P levels and the amounts of P taken up and transported by the hyphae. However, the distribution of Cu over roots and shoots was largely dependent on P levels. With increase in P level in the outer compartments the calculated hyphal contribution to the total amount of Cu in the shoots increased from 12% to 58%, but decreased in the roots from 75% to 46%. In conclusion, uptake and transport by VA-mycorrhizal hyphae may contribute substantially not only to P nutrition, but also to Cu nutrition of the host.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号